Смирнова Т.Б.

Неравенства. Итоговое повторение.

Теория.					
Строгие	a>0	(0; +∞)	-\/// <i>\</i>		
Нестрогие	a ≤ 0	(-∞;0]	<i>++++</i>		
	Oı	пределение	•		
	b) положительное чис.				
	b > a, если ($a - b$) отри	ицательное число			
a = b, если $a - b$					
1 Farms a > h ==		исловых неравенств			
1. Если $a > b$ и		1 a > b 1 a			
	c – любое число, то a - c - положительное чи				
	c - отрицательное чи				
	c > d, To $a + c > b +$				
		жительных <i>а</i> и <i>b</i> :			
6. Если <i>a</i> > <i>b</i> >	1 1				
7. Если <i>a</i> > <i>b</i> >	0 и $c > d > 0$, то ac	e > b d.			
	0 и $m \in \mathbb{N}$, то $a^m > b$				
9. Если <i>a</i> > <i>b</i> >	0 и $m \in \mathbb{N}$, то \sqrt{a} >	\sqrt{b} .			
		іные неравенства,			
		ду $ax > b$, $ax \ge b$, $ax < b$, ax	$\leq b$		
3 x > -6	-5 x≥1	0×2	0 x > 8		
x > -2	$x \le \frac{1}{5}$				
$x \in (-2; +\infty)$	$x \in (-\infty; \frac{1}{5}]$	$x \in \mathbf{R}$	$x \in \{\emptyset\}$		
$ x \le a \Rightarrow -a \le x \le a$ $ x > a \Rightarrow x > a$ $x < -a$					
	-	ные неравенства,			
приводимые к виду $ax^2 +bx+c>0$, $ax^2 +bx+c<0$, a>0					
Для решения квадратного неравенства вычисляется дискриминант $D=b^2$ -4 ac и					
находятся корни квадратного трёхчлена.					
	D<0	D=0	<i>D>0</i>		
	x	x ₀	x_1 x_2		
$ax^2 +bx+c>0$	$x \in \mathbf{R}$	$x \in \mathbf{R} \qquad \qquad x \in (-\infty; x_0) \cup (x_0; +\infty) \qquad x \in (-\infty; x_1) \cup (x_2; +\infty)$			
$ax^2 + bx + c < 0$	Решений нет	Решений нет	$x \in (x_1; x_2)$		
$\lambda \subset (\lambda_1, \lambda_2)$					

	Числовые неравенства.
1	На координатной прямой отмечены числа x и y . Сравните – x и – y .
	
	0 x y
	$Ax > -y$ $Bx = -y$ $Fx < -y$ $\Gamma. Сравнить невозможно$
	$Ex < -y$ $\Gamma. Сравнить невозможно$
2	Какие из неравенств 1) ху>200; 2) ху>100; 3) ху>400 верны при любых значениях х и у, удовлетворяющих условию х>10, у >20?
	A. 1 u 2
3	О числах x, y, z известно, что x < y < z. Какое из чисел положительно:
	$A. y-z \qquad B. x-z B. x-y \Gamma. z-x$
4	Известно, что $a > b$. Какое из следующих неравенств неверно?
	$A. \ a+5 > b+5 \qquad B5 \ a < -5 \ b B. \ a-5 < b-5 \Gamma. \ \frac{a}{2} > \frac{b}{2}$
5	Сравните $a^2 u a^3$, если известно, что $0 < a < 1$.
	$A. \ a^{\ 2} < a^{\ 3} \ B. \ a^{\ 2} = a^{\ 3} \ F. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
6	О числах a, b, c, d известно, что $a < b, b=c, c>d$. Сравнить du a .
	$A.\ d=a$ $B.\ d>a$ $\Gamma.$ Сравнить невозможно
7	Известно, что a и b – положительные числа. Сравните $\frac{1}{a}$ и $\frac{1}{b}$
	$A. \frac{1}{a} > \frac{1}{b}$ $B. \frac{1}{a} < \frac{1}{b}$ $B. \frac{1}{a} = \frac{1}{b}$ $\Gamma.$ Сравнить невозможно
8	$A. \frac{1}{a} > \frac{1}{b}$ $B. \frac{1}{a} = \frac{1}{b}$ C Сравнить невозможно На координатной прямой отмечены числа a и b . Какое из утверждений является верным?
	b 0 a
	A. a + b < b $B. a b > a$ $B. a b > a$ $F. a - b > b$
9	Значение какого из данных выражений положительно, если известно, что

	x > 0, y < 0?
	A. xy B. $(x-y) y$ F. $(y-x) x$
10	Известно, что верно неравенство $x - y > z$. Какое из следующих неравенств
	также верно?
	$A. z-x+y < 0$ $B. y > x-z$ $B. z+y > x$ $\Gamma. x-y-z < 0$
11	Известно, что a и b — положительные числа и $a > b$. Какое из утверждений неверно?
	$Aa < -b$ $B. a^2 > b^2$ $\Gamma. \sqrt{a} > \sqrt{b}$
	Линейные неравенства и системы неравенств.
12	Решить неравенство $2x - 3(x+4) < x + 12$
	A. $x > -12$ B. $x < -12$ Γ . $x < 12$
13	Решить неравенство 3х +5 ≤ 7х − 3 и укажите, на каком рисунке изображено
	множество его решений:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	B. $C.$ $C.$ $C.$ $C.$ $C.$ $C.$ $C.$ C
	$\begin{bmatrix} B. & -2 & 0 \\ & -2 & 0 \end{bmatrix}$
14	Решить неравенство $5x + 20 < 2(4x - 5)$
	$A. (-10; +\infty) \qquad B. (-\infty; -10) B. (10; +\infty) \qquad \Gamma. (-\infty; 10)$
15	Найти наименьшее целое решение системы неравенств
	$\begin{cases} 2 \times 4 + 6 > 0 \\ 3 - \times 1 \end{cases}$
	A 3
	A 3 B 2 B. 2 I. 3
16	Решить неравенство $6 - 3x < 19 - (x - 7)$
	A. $x > -10$ B. $x < -3$ Γ . $x > -3$
17	TATA TO BIA 1 TO BIA 1 D TIA 2
	Какие из чисел – 0,5; - 1; 1 и 0,5 являются решениями неравенства
	-3x - 4 > x - 1? A. 0,5; 1 B. 1 Γ . $-0,5$; 1; 0,5
18	Укажите наименьшее целое число, которое является решением неравенства
	$-\frac{x}{5} - \frac{1}{2} < 0.$
	А 1 Б. 2 В. 1 Г 2
19	На каком рисунке показано множество решений системы неравенств

	$\begin{cases} 3x+6 \ge 0 \\ 10-2x \ge 0 \end{cases}$				
	$A. \qquad \boxed{///} \qquad \qquad B. \qquad $				
	-2 -5 2				
	Б. ————————————————————————————————————				
	-2 5				
20	При каких значениях х имеет смысл выражение $\sqrt{-2x}$?				
	$A.\ npu\ x \ge 0$ $B.\ Hu\ npu\ каких\ x$ $\Gamma.\ Пpu\ любых\ x$				
21	Какое из данных чисел не входит в область определения выражения $\sqrt{x+2}$?				
	A. 2				
	Квадратные неравенства				
22	Решить неравенство $x^2 + 2x - 8 \le 0$				
	Ответ:				
23	Решить неравенство $x^2 \le 4$				
	Ответ:				
24	На рисунке изображён график функции $y = x^2 - 3x$. Используя этот график, решите неравенство $x^2 - 3x \ge 0$				
	Ответ:				
25	На каком рисунке изображено множество решений неравенства x² - 16≥0:				
	$A. \xrightarrow{-4} \stackrel{4}{4}$ $B. \xrightarrow{4} \stackrel{4}{4}$ $\Gamma. \xrightarrow{-4} \stackrel{4}{4}$				
	$B. \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	2 балла				
26	Решить неравенство $\frac{2x-7}{6} + \frac{7x-2}{3} \le 3 - \frac{1-x}{2}$				
27	Найдите наименьшее целое значение <i>а</i> при котором разность дробей				

	16-3a 3a+7			
	$\frac{16-3a}{3}$ и $\frac{3a+7}{4}$ отрицательна.			
28	При каких целых положительных значениях а верно неравенство			
	$a + \frac{8-11a}{12} > \frac{7+a}{4} - \frac{5-a}{3}$?			
29				
	Решить неравенство $(5 - 3x)(x - 1) < -1$			
30	Решить систему неравенств:			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{cases} \frac{3}{5} - \frac{2 - 4x}{3} \le \frac{2x - 3}{2} \\ \frac{2x - 27}{2} \ge 4x \end{cases}$			
	$\left(\begin{array}{c} 2x-27 \\ \end{array}\right)$			
	$\frac{1}{2} = 24x$			
31	Решить систему неравенств:			
	$\int_{0}^{\infty} 3x - 4 < x - 3$			
	$\begin{cases} 5x \le 0 \\ x = 0 \end{cases}$			
	$\begin{cases} 3x - 4 < x - 3 \\ 5x \le 0 \\ \frac{x}{2} > -1 \end{cases}$			
32				
32	Найти все решения неравенства $\frac{3x^2}{4} \le \frac{4-5x}{2}$,			
	принадлежащие промежутку [-1;1]			
	inpiniagiemanure inponiemyrky [1,1]			
33	При каких значениях х имеет смысл выражение:			
	$\sqrt{x-\frac{3}{4}x^2}$			
	V -7			
34	Найдите область определения выражения:			
	$\sqrt{3-2x-x^2}$			
	4 балла			
35	Решить систему неравенств:			
	$\int 5x^2 - 14x + 8 < 0$			
	$\begin{cases} 2x - \sqrt{3} > 0 \end{cases}$			
36	Найдите целые решения системы неравенств:			
	$\begin{cases} x^2 - 6x + 5 \le 0 \\ x^2 - 8x + 15 \ge 0 \end{cases}$			
	$\int_{0}^{\infty} x^{-6} x^{+13} \leq 0$			
37	Найдите область определения выражения:			
	$\sqrt{x^2+x+1}$			
	$\frac{\sqrt{x^2+x+1}}{x^2-x-2}$			
	6 баллов			
20				
38	Решить неравенство x^4 -5 x^2 + 4< 0			
<u> </u>	Найдите наименьшее целое значение x , при котором верно неравенство:			

	$x^4 + 4x^2 - 45 \le 0$
40	Укажите все целые числа, которые не принадлежат области определения
	выражения:
	$\sqrt{x^2-4} + \sqrt{x^2-5x+6}$
41	При каких значениях а неравенство
	$x^2 + (2a+4)x + 8a + 1 > 0$
	выполняется при всех значениях x ?
42	При каких значениях m система неравенств имеет ровно три целых решения:
	$\begin{cases} 5 - x < 2 \\ x + 6 < m + 1 \end{cases}$
	$\left \begin{array}{c} x+6 < m+1 \end{array} \right $

Литература.

- 1. Алгебра в таблицах.7-11 кл.: Справочное пособие/ Авт. Л.И.Звавич, А.Р.Рязановский М.: Дрофа, 2002
- 2. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл./[Л.В.Кузнецова,
- С.Б.Суворова, Е.А.Бунимович и др.] М.: Просвещение, 2007
- 3. П.И.Алтынов Алгебра Тесты. 7-9 классы М.: Дрофа, 1997
- 4. Газеты «Математика. Первое сентября»

Ответы.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ответы.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	4	5	6	7
$\begin{array}{ c c c c c c c c }\hline \Gamma & & & & & & & & & & & & & & & & & & $	A	A	Γ	В	Б	Γ	Γ
$\begin{array}{ c c c c c c c c }\hline \Gamma & & & & & & & & & & & & & & & & & & $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	9	10	11	12	13	14
$\begin{array}{ c c c c c c c c c }\hline \mathbf{B} & \mathbf{A} & \mathbf{B} & \mathbf{\Gamma} & \mathbf{B} & \mathbf{B} \\ \hline 22 & 23 & 24 & 25 & 26 & 27 & 28 \\ \hline [-4;2] & [-2;2] & (-\infty;0) \cup (3;+\infty) & \mathbf{\Gamma} & \mathbf{x} \leq 2 & a=3 & a=1 \\ \hline 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ \hline x < \frac{2}{3} & x > 2 & x \leq -4,5 & -2 < \mathbf{x} \leq 0 & -1 \leq x \leq \\ \hline \frac{2}{3} & 0 \leq x \leq \frac{4}{3} & -3 \leq x \\ \hline \frac{2}{3} & 0 \leq x \leq \frac{4}{3} & -3 \leq x \\ \hline 1;2;3;5 & x \neq -1 & -2 < x < -1 & x = -2 & -1;0;1 & 1 < x < 3 & 11 < m \leq 12 \\ \hline \end{array}$	Γ	Б	A	Б	A	A	В
$\begin{array}{ c c c c c c c c c }\hline \mathbf{B} & \mathbf{A} & \mathbf{B} & \mathbf{\Gamma} & \mathbf{B} & \mathbf{B} \\ \hline 22 & 23 & 24 & 25 & 26 & 27 & 28 \\ \hline [-4;2] & [-2;2] & (-\infty;0) \cup (3;+\infty) & \mathbf{\Gamma} & \mathbf{x} \leq 2 & a=3 & a=1 \\ \hline 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ \hline x < \frac{2}{3} & x > 2 & x \leq -4,5 & -2 < \mathbf{x} \leq 0 & -1 \leq x \leq \\ \hline \frac{2}{3} & 0 \leq x \leq \frac{4}{3} & -3 \leq x \\ \hline \frac{2}{3} & 0 \leq x \leq \frac{4}{3} & -3 \leq x \\ \hline 1;2;3;5 & x \neq -1 & -2 < x < -1 & x = -2 & -1;0;1 & 1 < x < 3 & 11 < m \leq 12 \\ \hline \end{array}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	16	17	18	19	20	21
$ \begin{array}{ c c c c c c c c c } \hline [-4;2] & \hline [-2;2] & (-\infty;0) \cup (3;+\infty) & \hline \Gamma & x \le 2 & a=3 & a=1 \\ \hline 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ \hline x < \frac{2}{3} & x > 2 & x \le -4,5 & -2 < x \le 0 & -1 \le x \le \\ \hline \frac{2}{3} & 0 \le x \le \frac{4}{3} & -3 \le x \\ \hline \frac{2}{3} & 0 \le x \le \frac{4}{3} & -3 \le x \\ \hline 1;2;3;5 & x \ne -1 & -2 < x < -1 & x = -2 & -1;0;1 & 1 < x < 3 & 11 < m \le 12 \\ \hline \end{array} $	Б	A	Б	Γ	Б	Б	В
$ \begin{array}{ c c c c c c c c c } \hline [-4;2] & \hline [-2;2] & (-\infty;0) \cup (3;+\infty) & \hline \Gamma & x \le 2 & a=3 & a=1 \\ \hline 29 & 30 & 31 & 32 & 33 & 34 & 35 \\ \hline x < \frac{2}{3} & x > 2 & x \le -4,5 & -2 < x \le 0 & -1 \le x \le \\ \hline \frac{2}{3} & 0 \le x \le \frac{4}{3} & -3 \le x \\ \hline \frac{2}{3} & 0 \le x \le \frac{4}{3} & -3 \le x \\ \hline 1;2;3;5 & x \ne -1 & -2 < x < -1 & x = -2 & -1;0;1 & 1 < x < 3 & 11 < m \le 12 \\ \hline \end{array} $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	23	24	25	26	27	28
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[-4;2]	[-2;2]	$(-\infty; 0) \cup (3;+\infty)$	Γ	x ≤ 2	a=3	a = 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	30	31	32	33	34	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	<i>x</i> ≤-4,5	$-2 < x \le 0$	-1≤ <i>x</i> ≤	4	-3≤ <i>x</i>	$\sqrt{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ x < \frac{\pi}{3}$ $ x > 2$			2	$0 \le x \le \frac{\pi}{3}$	≤ 1	$\frac{\sqrt{3}}{2} < x < 2$
1;2;3;5 $x \neq -1$ -2< $x < -1$ $x = -2$ -1;0;1 $1 < x < 3$ $11 < m \le 12$				$\frac{1}{3}$			2
1;2;3;5 $x \neq -1$ -2< $x < -1$ $x = -2$ -1;0;1 $1 < x < 3$ $11 < m \le 12$							
1;2;3;5 $x \neq -1$ -2< $x < -1$ $x = -2$ -1;0;1 $1 < x < 3$ $11 < m \le 12$	36	37	38	39	40	41	42
	1;2;3;5	<i>x</i> ≠ -1	-2 <x<-1< td=""><td>x = -2</td><td>-1;0;1</td><td>1<x<3< td=""><td>11<<i>m</i>≤12</td></x<3<></td></x<-1<>	x = -2	-1;0;1	1 <x<3< td=""><td>11<<i>m</i>≤12</td></x<3<>	11< <i>m</i> ≤12
x, z x z		$x \neq 2$	1 <x<2< td=""><td></td><td></td><td></td><td></td></x<2<>				